Removing Metals from Used Engine Oil | Industrial Centrifuge

Alfa-Laval-MOPX205-Coolant-Centrifuge

Table of Contents

Used Engine Oil – What is it? Where Does it Come From?

Used engine oil is a term used to describe used lubricating oil from Internal Combustion (IC) engines. Lubricating oil tends to lose its lubricating properties with use.

Hence, the oil is periodically replaced to prolong engine life and prevent breakdowns. The oil that is replaced is then referred to as used engine oil.

Automotive oil change shops to lubricating oil replacement in large marine engines are all sources of used engine oil.

Applications of Used Engine Oil

Used engine oil has several use cases in its afterlife, including serving as a source of fuel or as feedstock for the production of fresh lubricating oil.

When used as fuel, used engine oil is burnt as heating oil in residential and commercial heating. It is a low-cost source of heating, especially for producers of such oil.

Diesel fuel blended with used engine oil produces ‘black diesel’. Black diesel can often be used as fuel even in engines designed to operate on straight diesel fuel. Engine manufacturers allow a certain percentage of blended fuel in their engines. This use of blended fuel does not affect the manufacturer’s warranty under certain conditions.

Furthermore, after being purified and distilled, used oil from engines can be used as feedstock for fresh lubricant manufacturing.

Contaminants in Used Engine Oil

Contaminants in engine oil can take the form of either liquids or solids. The liquid contaminant could be water or glycol from the automotive engine coolant. Condensation in storage tanks can also introduce water (moisture) to the oil.

Solid contaminants are categorized as non-metallic or metallic. Non-metallic contaminants include sludge, dirt, carbon, ash, etc. Metallic particles include bearing and engine wear metal particles.

What are the sources of heavy metals and ash in used engine oil?

The most prominent example of non-metallic engine oil contaminant is ash, a carbon-based particle generated as a by-product of combustion. Ash suspended in used engine oil causes the color of the oil to appear black.

A major source of metallic contaminants in engine oil is heavy metals present in fuels. Heavy Fuel Oil (HFO) is the fuel of choice in large engines due to its low cost compared to diesel. HFO has high levels of heavy metals such as Chromium, Vanadium, Nickel, and Lead. These heavy metals can easily contaminate the engine lubricating oil.

The other source of heavy metals in engine oil is metal wear particles. As engine bearings and other parts wear due to friction, they release metal particles into the engine lube oil.

As an example, the following table compares the metal content in virgin engine oil compared to used engine oil from marine engines.

Engine Oil Metal Contaminants – Before & After Use

Sample Type Lead (ppm) Iron (ppm) Nickel (ppm) Copper (ppm) Chromium (ppm)
Un-used Oil 5.5 55.0 2.0 3.25 2.0
Used Engine Oil 132.0 785.0 47.0 125.0 65.0

Why remove water, heavy metals, and ash from used engine oil?

Water removal is necessary for several reasons. Used oil with water reduces the sale value of used oil as fuel. The processing of used oil for lubricant feedstock is hampered by the presence of water. Used oil emulsion is caused by water and is not desirable for many reasons.

Removal of heavy metals and ash from used engine oil is essential for the following reasons.

When used engine oil is burnt as fuel, it releases the heavy metals into the environment through the combustion gases. This is a cause of environmental air pollution.

Air polluted with heavy metal compounds is detrimental to health. Polluted air introduces toxic metals into the oceans which affect marine life. Soil and groundwater contamination is also a direct result of this pollution.

Ash in used engine oil causes processing challenges during the conversion of used oil into lubricant feedstock. Ash residue causes distilling equipment to get gummed up with thick carbon sludge. This leads to frequent cleaning and low process efficiency.

Purifying used motor oil using a disc stack centrifuge

An industrial disc-stack centrifuge uses mechanical separation to remove heavy metal and ash particles from used motor oil.

A disc-stack centrifuge exerts centrifugal force up to 10,000 g on the process fluid. In the case of used motor oil, this force is sufficient to extract fine metal and carbon particles from the oil.

Under this force, the heavier metal particles get pushed outward towards the centrifuge bowl wall. The ash particles flocculate to form bigger solids which separate under the high g-force.

Disc-stack centrifuges are also uniquely equipped to handle three-phase separation. The centrifuge can separate the water phase from the used oil, while simultaneously removing any solid contaminants. The separated water discharges through a discreet heavy phase outlet on the centrifuge.

Operating parameters affecting separation efficiency in a centrifuge.

Temperature
Oil temperature is inversely proportional to the viscosity of the oil. Thus, hotter the oil, the lower the viscosity. Low viscosity oil offers less resistance to the ash and metal particles from moving out of the oil.

Oil temperature can be raised by adding an inline heater to the centrifuge system. This is in addition to the customer’s heated tanks.

G Force
Centrifugal force is directly proportional to the separation efficiency of a centrifuge. A disc-stack centrifuge produces the highest level of centrifugal force among industrial centrifuges.

Flow-rate
Flow-rate of the used oil through a centrifuge is inversely proportional to retention time. Retention time is the duration each particle of used oil is exposed to the high centrifugal force.

Thus, the lower the flow-rate, the higher the retention time, which leads to better separation efficiency.

Specific Gravity Differential
A disc stack centrifuge magnifies the difference in specific gravity between phases. This magnification causes accelerated separation of the phases. So, the heavy metal particles separate from the oil quicker than the lighter ash particles.

Case Study – Large Scale Removal of Heavy Metals and Ash from Used Engine Oil

 

Customer Background

A used oil collection and processing company based on the East coast collected used engine oil. Their collection came from cruise ships, naval vessels, and inland oil change shops.

They processed the used oil by using filters and heating the oil to boil off the water. They then vacuum distilled the cleaned oil to produce lube oil feedstock.

The company faced many challenges while using this process. Listed below are some of these challenges.

Used Engine Oil Processing Challenges

 

  • High cost of fine filtration media.
  • Labor cost associated with manual filtration.
  • Energy cost of water evaporation through boiling.
  • Inability to remove heavy metal particles and ash in the pre-distillation stage. This caused frequent cleaning and wear of expensive distillation equipment.
  • Environmental compliance costs related to the emission of metal contaminated gases from the distillation.

Industrial Centrifuge Testing and Selection Process

The company contacted Dolphin Centrifuge to conduct a pilot-scale test on their used engine oil. We processed a small (< 1 gallon) sample through our pilot-scale, disc centrifuge.

The customer then analyzed the clean oil sample from our test. There was a significant reduction in heavy metal and ash contamination of the used engine oil.

Dolphin Centrifuge recommended an over-sized centrifuge. This was based on the flow-rate reduction required for ash removal. The following table summarizes the technical specifications of the centrifuge supplied by Dolphin.

Used Engine Oil Centrifuge Specifications

Type of Centrifuge Self-Cleaning, Disc Centrifuge
Manufacturer and Model Alfa Laval MOPX207
RCF (Relative Centrifugal Force) ~ 6,800 G
Rated Separation Efficiency < 1 µ Metal Particles
Rated Flow-Rate 28 GPM on Diesel Fuel
Flow on Used Engine Oil 10 GPM @ 180 F
Drive Motor 7.5 HP
Alfa Laval MOPX207 Used Oil Centrifuge Skid
Alfa Laval MOPX207 Used Oil Skid

Disc Centrifuge Performance Data on Used Engine Oil

The centrifuge system supplied by Dolphin Centrifuge produced the following results on used engine oil purification at the customer site.

Test Parameter Units Before Centrifuge After Centrifuge
Water wt % 12.65 0.80
Sediment wt % 2.42 0.06
Ash Content wt % 1.17 0.09
Metals      
      Aluminum ppm 495 12
      Chromium ppm 522 31
      Silicon ppm 386 85
      Vanadium ppm 128 31

Summary

Using a disc stack centrifuge to remove heavy metal and ash particles from used engine oil is efficient and cost-effective. This method is especially suitable for large scale processing of used engine oil.

Contact Dolphin Centrifuge for more information or to discuss your particular used oil application with our centrifuge experts!