Dolphin Centrifuge

Disc Stack Centrifuge | Benefits, Costs, Operation, Specs, Sizing, etc.

Alfa Laval MOPX 205 Duplex Centrifuge System Diesel
Duplex Disc Stack Centrifuge System for Diesel Fuel

Disc Stack Centrifuge (aka Disc Centrifuge)

A disc stack centrifuge is a specifically designed centrifuge that uses a stack of cone-shaped discs. The additional surface increases the settling area multi-fold while also reducing the sedimentation distance.

Combined with the high g-force (7,000 Gs), these features make the disc centrifuge a highly efficient separation device for fine particles (0.5µm) and immiscible liquids.

It is important to note that a disc stack centrifuge is also known as a disc bowl, conical plate, disk-stack, or disc stack separator.

Operation

A disc-stack centrifuge separates immiscible liquids and suspended solids from contaminated fluids. G-forces up to 10,000 Gs cause the particles’ sedimentation on the disc surface where they flocculate and move toward the centrifuge bowl periphery.

The accumulated solids are self-ejected or manually removed from the disc centrifuge bowl.

Think of the discs in the centrifuge bowl splitting the liquid column into thin slices between the inter-disc space. The rotating discs impart the rotational velocity to the incoming, stationery (non-rotating) fluid quickly due to the liquid’s viscosity. 

Alfa Laval Disc Stack Centrifuge Bowl Section
Alfa Laval Disc Stack Centrifuge Bowl Section

Difference Between Decanter and Disc Centrifuge

Compared to the disc-stack bowl, the rotating surface is the bowl wall in the chamber bowl (disc-less) centrifuge. Depending on the fluid layer’s depth, the inner fluid particles (away from the bowl wall) rotate at a much slower speed than the liquid particles in contact with the bowl wall.

This reduced rotational velocity decreases the separation efficiency considerably in chamber bowl centrifuges.

The liquid pond in the decanter centrifuge has similar limitations. The rotating bowl body contacts the fluid adjacent to it. This outer layer contact limits the separation efficiency of the decanters to bulkier and denser particles.

That is one reason the decanter centrifuge has a particle separation range higher than the one for disc-stack centrifuges.

The discs in the disc-stack centrifuge bowl also increase the settling area for sedimentation. Considering the g-force and the discs’ surface area, the effective settling area in a disc-stack centrifuge equals the size of multiple football fields!

For more details please read the Difference between Decanter and Disc Centrifuge.

Area Effectiveness Calculation

Chamber Decanter Disc Centrifuge Ae

Referring to the illustration above, the Area Equivalent (Ae ) is the settling area available to the separating liquid times the centrifugal acceleration. It is calculated by the following formula.

Ae = As x g

Where:
As = Surface Area
g  = G-Force

The following table compares the Ae of the disc centrifuge versus the decanter centrifuge, and a chamber bowl centrifuge. This table illustrates the comparative effectiveness of the disc-stack centrifuge versus these other ‘low – G’ centrifuges.

Chamber Bowl Centrifuge
300 mm x 250 mm @ 1000 G-Force
Decanter Centrifuge (NX-314)
350 mm x 300 mm @ 3,500 G-Force
Disc Stack Centrifuge
Multi-Disc Area 10 m2 @ 7,000 G-Force
Area Effective (Ae)25078019,000

Specifications

The following table lists specifications of our disc stack centrifuges. 

Centrifuge ModelAlfa Laval MOPX 205Alfa Laval MOPX 207Alfa Laval MOPX 213
Rated Capacity – GPM213090
Bowl Speed – RPM7,6006,3254,140
Bowl Volume (Ltrs)3.17.529
Drive Motor – kW47.516
Max. Power (Startup) – kW6.510.318
Running Power (Full Capacity) – kW2.46.410.4
Centrifuge Weight (w/o Motor) – Kg4307851,290
Bowl Weight – Kg56125400

Cost

The cost of a disc-stack centrifuge depends on several factors. The main factors affecting the cost of a centrifuge are listed below in the order of influence.

New, Re-manufactured, and Used

New centrifuges from the manufacturer are the first choice for most but often not cost feasible. The next option is a re-manufactured centrifuge from the OEM or a reputed centrifuge company. And finally, used ‘As-Is’ centrifuges are also an option but not recommended due to safety reasons.

A small-capacity disc centrifuge from name-brand OEM starts at around $15K for a bare centrifuge. The same centrifuge with all options, including a skid, control system, wiring, alarms, etc. go up to over $40K depending on options. On the other end, high-capacity, food-grade centrifuges cost over $750K.

A base re-manufactured disc centrifuge costs between 40% to 60% of similar capacity new machines. However, with additional options, a factory-new centrifuge’s cost rises quickly than a similarly equipped re-manufactured centrifuge with new optional accessories.

Throughput

The size of a disc-stack centrifuge refers to the processing capacity of the machine. Bigger, higher capacity centrifuge cost more than smaller capacity units, obviously. However, it is important to mention that the increase in cost of a larger capacity centrifuge is not in proportion to the capacity increase. In other words, the cost of a centrifuge is not directly proportional to it’s processing capacity.

As an example, a disc-stack centrifuge with a rated capacity of 10 Gallon-per-Minute costs only about 30% more than a centrifuge which is rated at 5 Gallons-per-Minute.

Manufacturer

Disc centrifuges from established, name-brand manufacturers such as Alfa Laval or Westfalia (GEA) cost more than those manufactured by Asian manufacturers (China, India, Turkey, etc.). The price multiplier is anywhere from 2 to 5 times. 

Centrifuges manufactured by Alfa Laval are high-quality machines known for their durability and longevity. Such companies have decades of manufacturing experience and also offer worldwide service and parts distribution networks. These advantages more than justify the related cost premium.

Options & Accessories

Optional equipment is often integrated with disc centrifuges to enhance the performance of the separator. Accessories such as feed pumps, electric pre-heaters, pre and post filters, sludge handling systems, etc. can add significant costs to the centrifuge system.

Actual process conditions and process fluid properties often define the options that would benefit the user. For example, an in-line heater will add to the system’s cost, but it could double the centrifuge throughput. 

Operating Cost

Operating cost refers to the actual cost incurred during the regular operation of the centrifuge system. Since centrifuges do not use any consumable filters or media, the only operating cost is electricity costs to run the centrifuge. 

The following table highlights the example of operating costs per gallon for a typical operation such as diesel fuel purification. This table assumes a cost of 0.20 cents/kW-hr of power.

Centrifuge Model & CapacityMAB 103
(2 GPM on Diesel)
MOPX 207
(22 GPM on Diesel)
WHPX 513
(62 GPM on Diesel)
Motor Power (kW)1515
Electricity Cost / Hour$0.20$1.00$2.20
Gallons / Hour1201,3203,720
Electric Cost/Gal0.16 Cents0.075 Cents0.06 Cents

From the above example, the operating costs are negligible compared to filters or other media-based separation methods.

Maintenance Costs

Maintenance costs for disc centrifuges are primarily related to the consumable spares parts needed for regular maintenance. In the following table, we have listed the spare parts cost for routine maintenance of the centrifuge we highlighted in the operating cost example above.

Intermediate Service Kit (2/year)$300$450$950
Major Service Kit (1/year)$650$1,400$2,200
Total Spare Parts Cost per Year$950$1,850$3,150
Gallon / Year (200 x 8 hr Days)192,0002,112,0005,952,000
Maintenance Cost (per Gal)0.5 Cents0.1 Cent0.05 Cent

Power Consumption

The main power consumption in a disc stack centrifuge is by the drive motor. It is industry practice to calculate the kW required per m3 or gallon of fluid processed.

Several design improvements in centrifuges have led to reduced power consumption. There are certain specific areas where the design changes have been most beneficial.

The reduction of drive train losses from belt & gear drive transmissions are achieved with direct-drive configurations with inverters.

Internal bowl turbulence reduction with improved designs has also contributed to power consumption optimization.

Centrifuge CapacityMotor HPRunning Amps @ 460 VACPower ConsumptionPower Consumption / Gallon
5 GPM2 HP2.5 A1 kW0.20 kW per GPM
10 GPM4 HP5 A2.2 kW0.22 kW per GPM
40 GPM10 HP9 A7.5 kW0.18 kW per GPM
60 GPM15 HP12 A11 kW0.18 kW per GPM

Sizing and Capacity

Disc centrifuges sizing is based on the flow rate of each centrifuge for a specific fluid. For example, all Alfa Laval disc centrifuges have an OEM published flow rate chart, which provides the expected capacity for specific fluid like diesel, fuel oil, hydraulic oil, etc.

The user should also consider another essential fact about disc centrifuges. The ‘rated’ capacity of a centrifuge has not much relevance in the practical application of centrifuges. The rated capacity is the hydraulic swallowing capacity of a centrifuge to prevent overflow. 

In real terms, the actual processing capacity is lesser than the ‘rated’ capacity. Based on the discussion above, the actual processing capacity is totally dependent on the process-liquid properties and contaminant properties. 

In other words, the same centrifuge model has different capacities for different liquids. This difference goes back to Stokes’ law, wherein the centrifuge efficiency is dependent on the viscosity of the fluid, amongst other factors.

The following table lists the sizing and capacity of Alfa Laval disc centrifuges for different fuels and oils.

Centrifuge TypeAlfa Laval MOPX 205Alfa Laval MOPX 207Alfa Laval MOPX 310Alfa Laval MOPX 213
Rated Capacity - GPM25346890
Capacity On ↓
Distillate (3 cSt)23316582
Diesel Fuel (13 cSt)15225662
Turbine Lube Oil (ISO 32)14205256
Hydraulic Oil (ISO 15)14205154
Light Fuel Oil (100 cSt)11193941
Medium Fuel Oil (380 cSt)7122324
Heavy Fuel Oil (600 cSt)581716

Benefits

As with all separation equipment, disc centrifuges have a specific niche area of application where they deliver the optimum solution for the separation of solids from liquids or liquids from solids and liquids.

However, they also have limitations to their applications, and we have discussed the disadvantages of disc centrifuges in a different article.

Benefits over Decanter Centrifuge

Decanter and Disc Centrifuge Particle Size Efficiency
Decanter and Disc Centrifuge Particle Size Efficiency

There are several benefits of disc centrifuges over decanter centrifuges. The following table highlights key benefits with a brief explanation of each.

Feature What? Why? Benefit

Particle Size Efficiency

A disc centrifuge can separate particles as small as 1 µ as compared to a decanter centrifuge, which is limited to particles larger than 50 microns. The higher g-force (~7,000 Gs) in a disc centrifuge allows it to separate much smaller particles than a decanter with a lower g-force (~ 3,000 Gs). This particle size efficiency makes a disc centrifuge uniquely suitable for removing small particles for polishing applications, which is impossible with a decanter centrifuge.

Liquid / Liquid Separation

With its high g-force, a disc stack centrifuge can separate immiscible liquids very efficiently. Though there are three-phase decanters (tricanters), they are not suitable for separating liquids with similar specific gravities. A higher g-force is required to separate liquids with similar specific gravities. A disc centrifuge has a higher g-force while a decanter centrifuge does not. The disc-centrifuge can separate one liquid from another liquid even if their specific gravities are very similar. Again, some decanter centrifuges that can separate liquids from each other need their specific gravities to be significantly different.

Adjusting Sludge Dryness

It is not possible to change the separated solid wetness in the decanter centrifuge. However, it is possible to adjust the sludge dryness in a disc-stack centrifuge. A decanter centrifuge continuously ejects the separated sludge, and the sludge dryness depends on the decanter’s pond-depth. A disc centrifuge ejects the separated sludge intermittently based on a timer.  The decanter needs to be stopped to adjust the pond depth to change the cake dryness. In a disc centrifuge, adjusting the ejection cycle frequency can help change the sludge moisture content while the centrifuge is operating.

Physical Size or Footprint

A disc-stack centrifuge has a smaller footprint compared to a decanter centrifuge of similar capacity. Decanter centrifuges are oriented horizontally, whereas disc centrifuges are vertically oriented. This orientation allows the disc centrifuge to have a smaller footprint compared to decanters. Disc centrifuges fit within limited space-constrained areas. This ability is an advantage for installing a centrifuge in an already existing facility. A decanter would be tougher to fit under similar conditions.

Benefits over Filtration

Disc centrifuges are capital intensive equipment. However, reduced maintenance costs and higher production levels make up for initial expense quickly. Typically the upfront cost is recovered within 1 to 2 years of operation. 

A disc centrifuge has several benefits compared to filters. The following list highlights some of these benefits.

The following table compares disc-stack centrifuges’ features and costs with other conventional separation methods, i.e., filters and coalescers.

Type of SeparatorDisc CentrifugeFiltrationCoalescing
Solids SeparationYesYesNo
Free Water SeparationYesNoYes
Dissolved Water SeparationNoNoNo
Emulsion SeparationYes*NoYes*
Costs
OperatingLowHighHigh
EquipmentHighLowMedium
Total Cost of OwnershipLowHighHigh

* Chemically bonded emulsions need demulsifiers before centrifugation.

Disc Centrifuge Bowl Types

Disc-stack centrifuges are available with two bowl configurations. A ‘self-cleaning’ (aka auto ejecting) bowl has the built-in ability to ejected the separated sludge periodically with the machine stoppage. A ‘manual-cleaning’ (aka solids retaining) bowl retains the separated sludge and needs to be manually cleaned on a periodic basis. This needs the centrifuge to be stopped for the operator to open and clean the sludge from the bowl.

Self-Cleaning Centrifuge Bowl Operation

Self Cleaning Centrifuge Bowl
Self Cleaning Centrifuge Bowl

The process fluid enters the bowl through the feed tube. The disc-stack imparts the rotating velocity to the incoming liquid. The heavy-phase (water) moves outward due to the centrifugal force.

It displaces the lighter oil (light-phase) inwards towards the bowl center. The clean oil rises to the top of the bowl and exits the bowl through the paring disc pump (4).

The heavy-phase (water) travels over the top-disc (5) and exits the bowl through the water-paring-disc (6).

The heaviest phase (Solids) collect at the bowl periphery. The ‘self-cleaning’ bowl opens intermittently to discharge the separated solids periodically. The mechanism operates as follows.

The hydraulic operating system opens and closes the bowl at predetermined intervals. The sliding piston (7) is pushed down, which opens the bowl body’s sludge-ejection ports. The extremely high centrifugal g-force within the bowl instantly ejects out the separated sludge.

Due to their intermittent sludge ejection feature, ‘self-cleaning’ disc centrifuges are limited to solids content up to about 8% (%v/v). Higher solids content leads to a higher possibility of bowl clogging and frequent sludge ejection cycles. Both of these conditions are not desirable from the centrifuge perspective.

Manual Clean Centrifuge Bowl Operation

Solid Bowl Centrifuge Bowl
Solid Bowl Centrifuge Bowl

In the ‘manual-clean’ bowl, the process fluid comes into the bowl from the top (1). The distributor (2) imparts rotation to the fluid before the fluid enters the disc-stack (3). The separation happens between the disc of the disc-stack.

The high g-force pushes the heavier fluid (heavy-phase) and solids towards the bowl periphery (wall). While the solids collect on the bowl watt, the water (heavy-phase) passes through the passage over the top-disc (4) to the heavy-phase outlet (5).

The oil (light-phase) is displaced towards the inner center of the bowl. It rises through the distributor channels to reach the paring disc pump (6). This pump pumps out the clean light-phase out of the centrifuge bowl.

The collected solids must be manually removed from the bowl by the operator by stopping the centrifuge at periodic intervals.

These solid-bowl centrifuges are much simpler than the ‘self-cleaning’ bowls described above. They do not have the hydraulic sludge ejection system built into the bowl.

This simplified design does not require the operating water system (like the ‘self-cleaning’ centrifuges) for hydraulic operations underneath the bowl. This makes these ‘manual-clean’ centrifuges easier to install, maintain, and operate.

However, this ‘solids-retaining’ design also limits these centrifuges’ applicability to processing fluids with no solids or negligible amounts of solids. In other words, these centrifuges are ideal for liquid/liquid separation applications.

Re-manufactured Alfa Laval Disc Centrifuges in Stock at Dolphin

Contact

To get more details email us or call us on (248) 522-2573

Call Us Now
Copyright © 2020 Dolphin Marine & Industrial Centrifuges. All Rights Reserved.
Website Design
WITH ❤ BY WEBZSTORE
crossmenuchevron-down